Novel synthesis of purine acyclonucleosides possessing a chiral 9-hydroxyalkyl group by sugar modification of 9-d-ribitylpurines

Kosaku Hirota, ${ }^{*, a}$ Yasunari Monguchi, ${ }^{a}$ Hironao Sajiki, ${ }^{a}$ Magoichi Sako ${ }^{a}$ and Yukio Kitade ${ }^{b}$
${ }^{a}$ Laboratory of Medicinal Chemistry, Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585, Japan
${ }^{b}$ Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan

Abstract

A novel approach to the synthesis of purine acyclonucleosides having chiral carbons in the \mathbf{N}^{9}-hydroxyalkyl chain was achieved by using $9-(2,3-O$-isopropylidene-D-ribityl)purines 1 , which are readily prepared from commercially available purine nucleosides. $9-[(2 S, 3 R)-2,3,4$-Trihydroxybutyl]purines 4 a and 4 b , $9-[(2 S, 3 S)-2,3,4$-trihydroxybutyl]purines 6 and $6 b$, L-eritadenine 8 , and its analogue 11 are conveniently synthesized via key intermediates, ($2 S, 3 S$)-2,3-isopropylidenedioxy-4-(purin-9-yl)butanals 2 prepared by NaIO_{4} oxidation of diols 1.

Introduction

During the search for effective, selective and nontoxic antiviral agents, a potent antiviral agent, 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir) has been developed for the treatment of herpes virus type 1 infections. ${ }^{1}$ The discovery of acyclovir has stimulated extensive research in the synthesis of new acyclonucleosides in which the carbohydrate moieties are acyclic chains mimicking the sugar portion of naturally occurring nucleosides. Several purine acyclonucleosides having chiral carbons in the N^{9}-hydroxyalkyl chain, such as D-eritadenine ${ }^{2,3}$ and buciclovir ${ }^{4}$ have been shown to possess antiviral activity. Most

synthetic methods for the preparation of such acyclonucleosides involve the condensation of a base moiety with an appropriate side-chain moiety. ${ }^{5}$ These methods, however, incur some difficulties in stereoselective synthesis of the side-chain moiety and/or regioselective condensation of the base moiety with the side-chain moiety. Synthetic methods starting from commercially available nucleosides such as adenosine and guanosine have been unprecedented except for an example of oxidative cleavage of the $2^{\prime}, 3^{\prime}$-cis-diol portion of ribonucleosides with $\mathrm{NaIO}_{4}{ }^{6}{ }^{6}$

A few years ago we reported a convenient formation of acyclonucleosides, 9-D-ribitylpurines $\mathbf{1}$, by the reductive cleavage of the $\mathrm{C}-1^{\prime}-\mathrm{O}-4^{\prime}$ bond of purine nucleosides with diisobutylaluminium hydride (DIBAL). ${ }^{7}$ The 9-D-ribitylpurines 1 were utilized for the development of a novel methodology to prepare acyclonucleosides having chiral carbons in the side chain from commercially available purine nucleosides. Our strategy involves two disconnections of the $\mathrm{C}-1^{\prime}-\mathrm{O}-4^{\prime}$ and C-4'-C-5' bonds of purine nucleosides as depicted in Scheme 1. In this paper, we describe the asymmetric construction of 9 -(2,3,4-trihydroxybutyl)purines 4 and $\mathbf{6}$ and eritadenine

Scheme $1 \quad \mathrm{~B}=$ adenin-9-yl or guanin-9-yl
analogues $\mathbf{8}$ and $\mathbf{1 1}$ as potential antiviral agents by taking advantage of two of the chiral carbons of substrates $1 .{ }^{8}$

Results and discussion

First, ($2 S, 3 S$)-4-(adenin-9-yl)-2,3-isopropylidenedioxybutanal 2a was synthesized as a chiral key intermediate for the preparation of acycloadenosines. Oxidation of diol $\mathbf{1 a}^{7}$ with NaIO_{4} afforded aldehyde $\mathbf{2 a}$ in 92% yield. The structure of compound 2a was determined by ${ }^{1} \mathrm{H}$ NMR spectral analyses. Thus, the ${ }^{1} \mathrm{H}$ NMR $\left\{\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO},\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right\}$ spectrum of compound 2a exhibited complicated signals at room temperature. Upon raising the probe temperature to $100^{\circ} \mathrm{C}$ these signals came to merge into one set of signals for the aldehyde structure. The aldehyde 2a would exist in the form of both a polymer and a hydrate at ambient temperature; Schmid et al. have reported that D-glyceraldehyde acetonide tended to polymerize and easily form a hydrate in the presence of water. ${ }^{9}$ Reduction of compound 2a with NaBH_{4} afforded the primary alcohol 3a in 78% yield. The stereochemistry of alcohol 3a was confirmed by its conversion into the corresponding $(R)-(+)-\alpha-$ methoxy- α-(trifluoromethyl)phenylacetate (MTPA ester). ${ }^{10}{ }^{19} \mathrm{~F}$ NMR analyses of the ester showed no formation of any detectable epimeric isomer. This fact evidently indicates that the formation of compounds $\mathbf{2 a}$ and 3a proceeds with complete retention of steric configuration. The alcohol 3a smoothly underwent removal of the isopropylidene protection with 80% aq. AcOH to afford 9 [($2 S, 3 R$)-2,3,4-trihydroxybutyl]adenine $\mathbf{4 a} \mathbf{a}^{11,12}$ quantitatively. On the other hand, an epimer 5a was synthesized by inversion at the 2-position of the aldehyde $\mathbf{2 a}$ and by the subsequent reduction. Lee and co-workers have reported that an alcoholic solvent was favourable for the easy epimerization of 2,3-erythro-aldose acetonide to 2,3-threo-aldose acetonide. ${ }^{13}$ Therefore, treatment of compound 2a with NaOMe in MeOH followed by reduction with NaBH_{4} gave a mixture of alcohols 5a
and 3a ($\mathbf{5 a}: \mathbf{3 a}=94: 6$). Both epimers could be separated by silica gel column chromatography to give isomer 5 a in 66% yield. Enantiomeric purity of product $\mathbf{5 a}$ was confirmed by the conversion to its MTPA ester and its ${ }^{19} \mathrm{~F}$ NMR analysis. Deprotection of compound 5a afforded $9-[(2 S, 3 S)-2,3,4-$ trihydroxybutyl]adenine $\mathbf{6 a}{ }^{12}$ in 60% yield (Scheme 2).

This methodology was applied to the synthesis of acycloguanosines. When oxidation of 9-(2,3-O-isopropylidene-d-ribityl)guanine 1b and subsequent reduction were conducted under analogous reaction conditions, a diastereomeric mixture of compound 3b (erythro) and its ($3^{\prime} S$)-isomer 5b (threo) was formed in the ratio 83:17. The NaIO_{4} oxidation of diol $\mathbf{1 b}$ in a sodium acetate buffer $(\mathrm{pH} 4)$ gave the aldehyde $\mathbf{2 b}$ as a hydrate in 87% yield and subsequent reduction of aldehyde $\mathbf{2 b}$ led to the quantitative formation of a chiral alcohol $\mathbf{3 b}$ without epimerization. Deprotection of compound 3b with 80% aq. AcOH afforded 9-[(2S,3R)-2,3,4-trihydroxybutyl]guanine 4b in 93\% yield (Scheme 2). The preparation of a ($3^{\prime} S$)-epimer $\mathbf{6 b}$ was

6a, b
a series: $\mathrm{B}=$ adenin- $9-\mathrm{yl}$
b series : $B=$ guanin- $9-y l$

Scheme 2 Reagents and conditions: i, for 2a, aq. NaIO_{4}; for 2b, NaIO_{4}, $\mathrm{AcOH}-\mathrm{AcONa}$ buffer (pH 4); ii, aq. NaBH_{4}, pH 7-8; iii, $80 \% \mathrm{AcOH}$; iv, for $\mathbf{5 a}, \mathrm{NaOMe}, \mathrm{MeOH}$, then aq. NaBH_{4}; for compound $\mathbf{5 b}, \mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH ; then aq. NaBH_{4}
conducted using a modified method of that described for compound $6 \mathbf{a}$. Thus, treatment of compound $\mathbf{2 b}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH gave the $(2 R)$-epimer of aldehyde $\mathbf{2 b}$ as a diastereomeric mixture with 2b (threo: erythro $=>95:<5$) in 75% yield, and subsequent NaBH_{4} reduction gave the corresponding alcohol $\mathbf{5 b}$. Deprotection of compound $\mathbf{5 b}$ afforded the desired 9 [$(2 S, 3 S)$-2,3,4-trihydroxybutyl]guanine $\mathbf{6 b}$ as the sole isomer in 88% yield.

It is noteworthy that the stereochemistry at the 3^{\prime}-position of acyclonucleosides $\mathbf{4}$ and $\mathbf{6}$ could be easily controlled by the use of the aldehyde $\mathbf{2}$ as a chiral pool.

The aldehyde $\mathbf{2 a}$ was utilized as a novel approach to the synthesis of L-eritadenine $\mathbf{8}$, which is the enantiomer of naturally occurring D-eritadenine. ${ }^{3}$ Votruba and Holy have reported that L-eritadenine, which is the most effective, next to D-eritadenine, of the four stereoisomeric eritadenines, inhibits S-adenosyl-Lhomocysteine hydrolase. ${ }^{3 a}$ Our first attempted preparation of Leritadenine 8, oxidation of compound 2a with KMnO_{4} in aq. alkaline solution, resulted in the formation of an epimeric mixture of the corresponding carboxylic acid 7 (erythro) and its $(2 R)$-isomer (threo) in 63% yield (erythro: threo $=32: 68)$. The epimerization of D-eritadenine methyl ester under basic conditions has been described in the literature. ${ }^{14}$ Therefore, the $\mathrm{Pt} /$ C-catalyzed oxidation of compound $\mathbf{2 a}$ with O_{2} was carried out under neutral conditions to afford acid 7 in 46% yield without
any detectable epimer. Deprotection of compound 7 with 10% aq. AcOH gave l-eritadenine $\mathbf{8}$ quantitatively, whose optical activity, $[a]_{\mathrm{D}}^{26}-14.3(c 0.07,1 \mathrm{~m} \mathrm{HCl})$, \dagger was identical with that reported by Holy et al. (Scheme 3). ${ }^{3 b}$

Scheme 3 Reagents and conditions: i, $\mathrm{Pt} / \mathrm{C}, \mathrm{O}_{2}$, water; ii, $10 \% \mathrm{AcOH}$; iii, $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{NaOMe}, \mathrm{MeOH}$; iv, $\mathrm{SOCl}_{2}, \mathrm{DMF}$; v, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$; vi, HCHO, 2 м NaOH, water; then NaBH_{4}

Furthermore, the synthesis of the nitrile 11, which is structurally analogous to L -eritadenine $\mathbf{8}$, was attempted. The reaction of compound 2 a with 1.5 mol equiv. of hydroxylamine afforded the oxime $\mathbf{9}$ in 71% yield as a mixture of geometrical isomers ($E: Z=38: 62$). Dehydration of oxime 9 by using 5 mol equiv. of thionyl dichloride in dimethylformamide (DMF) gave the nitrile $\mathbf{1 0}$ in 79% yield as a single diastereomer. The steric configuration of compound $\mathbf{1 0}$ (erythro-isomer) was confirmed by comparison of its ${ }^{1} \mathrm{H}$ NMR spectrum with those of compounds 2a, $\mathbf{3}$ and 5 and by nuclear Overhauser effect (NOE) experiments on compounds $\mathbf{1 0}$ and 5a. Thus, the difference in chemical shifts of the two methyl singlets of the isopropylidene group in nitrile $\mathbf{1 0}(0.23 \mathrm{ppm})$ is close to those in erythrocompounds 2a, 3a and 3b ($0.22,0.21$, and 0.19 ppm , respectively), but larger than those in threo-compounds $\mathbf{5 a}$ and $\mathbf{5 b}$ (0.06 and 0.04 ppm , respectively). ${ }^{13 b}$ Irradiation of 2-H of compound $\mathbf{1 0}$ showed an NOE enhancement (8.6%) at $3-\mathrm{H}$, whereas in a similar NOE experiment on threo-compound 5a an enhancement was hardly observed (see Experimental section). These facts supported the idea that the conversion of $\mathbf{2 a}$ into $\mathbf{1 0}$ proceeded with retention of enantiomeric configuration; otherwise, the inversion at both the 2 - and 3 -position would occur completely. Deprotection of compound 10 with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (TFA) afforded the desired dihydroxy nitrile $\mathbf{1 1}$ in 57% yield.

Another synthetic application of compound 2a as a chiral intermediate was examined for the synthesis of tetraol $\mathbf{1 3}$ which has the sole chiral centre in the alkyl chain. Crossed aldol condensation of aldehyde 2a and formaldehyde in basic media followed by NaBH_{4} reduction afforded isopropylidene-protected tetraol $\mathbf{1 2}$ in 89% yield in a one-pot procedure. The optical rotation of product 12 was $[a]_{\mathrm{D}}^{28}-38.5(c 0.27, \mathrm{MeOH})$. The desired tetraol $\mathbf{1 3}$ was obtained by treatment of compound $\mathbf{1 2}$ with TFA in 83% yield.

[^0]Among acyclic analogues of adenosine, compounds 4a, 6a and $\mathbf{1 3}$ were virtually inactive against influenza A, respiratory syncytial virus, human immunodeficiency virus, herpes simplex virus type 1, and human cytomegalovirus with EC_{50} values of $>40 \mu \mathrm{~g} \mathrm{ml}^{-1}$. Biological evaluations of adenosine analogues 8 and $\mathbf{1 1}$ and guanosine analogues $\mathbf{4 b}$ and $\mathbf{6 b}$ are in progress.

This methodology using $2^{\prime}, 3^{\prime}-O$-isopropylidene-protected 9 -D-ribitylpurines as chiral starting materials was shown to be widely applicable to the synthesis of biologically interesting acyclonucleosides. In particular, the aldehydes $\mathbf{2 a}$ and $\mathbf{2 b}$ are useful intermediates for the preparation of purine acyclonucleosides mimicking ribonucleosides.

Experimental

Mps (uncorrected) were determined with a Yanagimoto melting point apparatus. Elemental analyses were performed by the microanalytical laboratory of our university. Optical rotations were measured on a JASCO DIP-370 polarimeter. UV absorption spectra were recorded on a Shimadzu 260 spectrophotometer. IR spectra were measured using a Perkin-Elmer 1640 FT-IR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM GX-270 (270 MHz) or a JNM EX-400 (400 MHz) spectrometer. Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are expressed in ppm relative to tetramethylsilane in CDCl_{3} as solvent or internally referenced to the residual protonated solvent resonances ($\delta_{\mathrm{H}} 2.49$) in [${ }^{2} \mathrm{H}_{6}$ DMSO as solvent. J-Values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL JNM EX-400 spectrometer (100 MHz and 376 MHz , respectively). Solvent peak $\left(\mathrm{CDCl}_{3} \delta_{\mathrm{C}} 77.0 ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO: $\left.\delta_{\mathrm{C}} 39.5\right)$ was used as an internal standard for ${ }^{13} \mathrm{C}$ NMR, and TFA ($\delta_{\mathrm{F}}-76.5$) was used as an external standard for ${ }^{19} \mathrm{~F}$ NMR. Mass spectra and highresolution mass spectra were taken on JEOL JMS-D 300 or a JMS-SX 102A machine. Fast-atom bombardment (FAB) mass spectra were measured with m-nitrobenzyl alcohol (NBA) as matrix.

TLC analyses were carried out on precoated Silicagel $60 \mathrm{~F}_{254}$ plates (Merck, Art 5715). The silica gel used for column chromatography was Wakogel C-300 or Fujigel BW-200. Reversedphase chromatography was accomplished by Sep-Pak ${ }^{\otimes}\left(\mathrm{C}_{18}\right)$ cartridge (Waters).

(2S,3S)-4-(Adenin-9-yl)-2,3-isopropylidenedioxybutanal 2a

To a stirred aqueous solution of 9-(2,3-O-isopropylidene-Dribityl)adenine 1a ($853 \mathrm{mg}, 2.76 \mathrm{mmol}$ in 25 ml) was added $\mathrm{NaIO}_{4}(885 \mathrm{mg}, 4.14 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was quenched with ethylene glycol ($153.8 \mu \mathrm{l}, 2.76 \mathrm{mmol}$) and was further stirred at $0^{\circ} \mathrm{C}$ for 1 h . After the solvent had been evaporated off in vacuo, anhydrous MeOH was added to the residue. The precipitate was filtered off over a Celite pad and then the filtrate was concentrated to dryness. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1\right)$ to give title aldehyde 2a (700 $\mathrm{mg}, 92 \%$) as an amorphous substance, $\lambda_{\max }($ water $) / \mathrm{nm} 260 ; v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3345,3213,2988,2938,1615,1479,1380,1331$, 1298, 1222, 1162, 1076, 891, 797 and 648; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; [${ }^{2} \mathrm{H}_{6}$]DMSO; $100^{\circ} \mathrm{C}$) 1.32 and 1.54 (each 3 H , s, isopropylidene), 4.20 ($1 \mathrm{H}, \mathrm{dd}, J 14.2$ and $9.3,4-\mathrm{H}$), 4.44 (1 H , dd, $J 14.2$ and $3.4,4-\mathrm{H}), 4.74(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and $2.0,2-\mathrm{H}), 4.90(1 \mathrm{H}$, ddd, $J 9.3,7.3$ and $3.4,3-\mathrm{H}), 6.78\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, adenine $\left.6-\mathrm{NH}_{2}\right), 8.02$ $(1 \mathrm{H}, \mathrm{s}$, adenine, $2-$ or $8-\mathrm{H}), 8.16(1 \mathrm{H}, \mathrm{s}$, adenine $8-$ or $2-\mathrm{H})$ and 9.74 ($1 \mathrm{H}, \mathrm{d}, J 2.0, \mathrm{CHO}$); m / z (EI) 277 ($\mathrm{M}^{+}, 17 \%$), 190 (100) and 136 (79) [Found (EI): M^{+}, 277.1185. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{3}$ requires M, 277.1175].

(2S,3S)-4-(Guanin-9-yl)-2,3-isopropylidenedioxybutanal 2b

To a stirred suspension of 9-(2,3-O-isopropylidene-d-ribityl)guanine $\mathbf{1 b}(162.7 \mathrm{mg}, 0.5 \mathrm{mmol}$) in AcOH-AcONa buffer (pH 4) $(\sim 100 \mathrm{ml})$ was added $\mathrm{NaIO}_{4}(160.4 \mathrm{mg}, 0.75 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred at room temp. for 1.5 h before being
quenched with ethylene glycol ($13.9 \mu \mathrm{l}, 0.25 \mathrm{mmol}$), further stirred at $0^{\circ} \mathrm{C}$ for 1 h and concentrated in vacuo. The residue was purified by reversed-phase chromatography (water- MeCN , $9: 1$) to give solid aldehyde 2b as a monohydrate (134.8 mg , 87%), mp $257^{\circ} \mathrm{C}$ (decomp.) (Found: C, $46.2 ; \mathrm{H}, 5.45$; N, 22.4. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires C, $46.30 ; \mathrm{H}, 5.50 ; \mathrm{N}, 22.50 \%$); $\lambda_{\text {max }}($ water $) /$ $\mathrm{nm} 252 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3346,3160$, 2989, 2942, 2784, 1693, 1657, 1621, 1575, 1542, 1486, 1384, 1222, 1166, 1076, 1044, 889 , $847,780,726,637$ and $580 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$ DMSO $) 1.21$ and 1.43 (each 3 H , s, isopropylidene), $3.96(1 \mathrm{H}, \mathrm{t}, J 6.8,2-\mathrm{H}), 4.00$ $(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and $10.7,4-\mathrm{H})$, $4.26(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 2.4 , $4-\mathrm{H}), 4.40(1 \mathrm{H}$, ddd, J 10.7, 6.8 and $2.4,3-\mathrm{H}), 4.88(1 \mathrm{H}$, td, $J 6.8$ and $5.9,1-\mathrm{H}), 6.16(1 \mathrm{H}, \mathrm{d}, J 6.8,1-\mathrm{OH}), 6.23(1 \mathrm{H}, \mathrm{d}$, $J 5.9,1-\mathrm{OH}), 6.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, guanine 2- NH_{2}), $7.59(1 \mathrm{H}, \mathrm{s}$, guanine 8-H) and $10.48\left(1 \mathrm{H}, \mathrm{s}\right.$, guanine $\left.\mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $25.36,27.78,43.45,74.25,79.59,88.04,108.21,116.33,138.09$, 151.13, 153.34 and 156.69; $m / z(\mathrm{FAB}, \mathrm{NBA}) 312\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 88%).

9-[(2'S,3'R)-4'-Hydroxy-2', $\mathbf{3}^{\prime}$-isopropylidenedioxybutyl]-

 adenine 3aTo aq. aldehyde 2a ($27.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ in 5 ml) was added $\mathrm{NaBH}_{4}(18.9 \mathrm{mg}, 0.5 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$ and then the pH of the reaction mixture was adjusted to $7-8$ with 10% aq. AcOH . After being stirred at $0^{\circ} \mathrm{C}$ for 1.5 h , the mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 18: 1\right)$ to give compound 3a ($21.7 \mathrm{mg}, 78 \%$) as a solid, which was recrystallized from EtOH-Et ${ }_{2} \mathrm{O}, \mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$ (lit., ${ }^{12}$ 182-184 ${ }^{\circ} \mathrm{C}$) (Found: C, 51.45; H, 6.2; N, 24.75. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 1 / 10 \mathrm{H}_{2} \mathrm{O}$ requires C, 51.27; $\mathrm{H}, 6.17$; $\mathrm{N}, 24.92 \%$); the existence of water in this product was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 260$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3436,3298,3225,2986,2943,2881,1676,1605$, $1575,1477,1418,1384,1306,1242,1061,909,844,779$ and 721; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.20$ and 1.41 (each 3 H , s, isopropylidene), $3.62\left(2 \mathrm{H}, \mathrm{t}, J 5.4,4^{\prime}-\mathrm{H}_{2}\right), 4.19(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $\left.10.3,1^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}, \mathrm{dd}, J 6.4\right.$ and $\left.5.4,3^{\prime}-\mathrm{H}\right), 4.36(1 \mathrm{H}$, dd, $J 13.7$ and $\left.2.4,1^{\prime}-\mathrm{H}\right), 4.56\left(1 \mathrm{H}\right.$, ddd, $J 10.3,6.4$ and $\left.2.4,2^{\prime}-\mathrm{H}\right)$, $5.03\left(1 \mathrm{H}, \mathrm{t}, J 5.4,4^{\prime}-\mathrm{OH}\right), 7.19\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{NH}_{2}\right), 8.07(1 \mathrm{H}, \mathrm{s}$, 2 - or $8-\mathrm{H})$ and $8.12(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 25.35$, $27.83,43.47,58.96,74.54,76.81,108.12,118.54,141.15,149.52$, 152.28 and $155.90 ; \mathrm{m} / \mathrm{z}$ (EI) 279 ($\mathrm{M}^{+}, 22 \%$), 264 (46), 204 (97) and 136 (100).

9-[(2'S, $\left.3^{\prime} R\right)-4^{\prime}$-Hydroxy-2', 3^{\prime}-isopropylidenedioxybutyl]guanine 3b

Compound $\mathbf{2 b}$ ($15.6 \mathrm{mg}, 0.05 \mathrm{mmol}$) was treated in a manner similar to that described for the preparation of compound $\mathbf{3 a}$. After being stirred at room temperature for 1 h , the mixture was concentrated in vacuo. The residue was purified by reversedphase chromatography (water- $\mathrm{MeCN}, 9: 1$) to give title compound 3b $(14.6 \mathrm{mg}, 99 \%)$ as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 254$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3397,3135,2986,2939,2772,1691,1655,1479$, $1379,1219,1167,1072,1050,842,781,694$ and $634 ; \delta_{\mathrm{H}}(400$ $\left.\left.\mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.22$ and 1.41 (each 3 H , s, isopropylidene), $3.57\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right), 4.01\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.10.3,1^{\prime}-\mathrm{H}\right), 4.17$ $\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.2.9,1^{\prime}-\mathrm{H}\right), 4.20\left(1 \mathrm{H}, \mathrm{q}, J 6.4,3^{\prime}-\mathrm{H}\right), 4.48$ (1 H , ddd, $J 10.3,6.4$ and $\left.2.9,2^{\prime}-\mathrm{H}\right), 4.98\left(1 \mathrm{H}, \mathrm{t}, J 4.9,4^{\prime}-\mathrm{OH}\right)$, $6.43\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2-\mathrm{NH}_{2}\right), 7.64(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $10.50\left(1 \mathrm{H}, \mathrm{s}, \mathrm{N}_{1-}-\right.$ $\mathrm{H}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 25.31,27.80,43.08,59.00,74.58,76.75$, $108.04,116.35,137.76,151.17,153.43$ and $156.71 ; ~ m / z$ (EI) 295 $\left(\mathrm{M}^{+}, 87 \%\right), 280$ (63), 220 (75), 165 (100) and 152 (98) [Found (EI): M^{+}, 295.1289. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires M, 295.1280].

Preparation of (+)-MTPA ester of alcohol 3a

To a solution of $(R)-(+)-\alpha$-(trifluoromethyl)phenylacetic acid ($19.7 \mathrm{mg}, 0.084 \mathrm{mmol}$) and DMF ($6.5 \mu \mathrm{l}, 0.084 \mathrm{mmol}$) in hexane (3.5 ml) was added oxalyl dichloride ($36.6 \mu \mathrm{l}, 0.42 \mathrm{mmol}$) at room temp. After being stirred for 1 h , the mixture was filtered and the filtrate was evaporated in vacuo. To the residue was
added a mixture of alcohol $\mathbf{3 a}(19.6 \mathrm{mg}, 0.07 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(29.3$ $\mu \mathrm{l}, 0.21 \mathrm{mmol}$) and 4-(dimethylamino)pyridine (DMAP) (6.0 $\mathrm{mg}, 0.049 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$, and further pyridine (0.1 ml) after 23 h . This operation was repeated until the disappearance of starting alcohol 3a was observed by TLC analysis $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 5: 1\right)$. As a result MTPA ($78.7 \mathrm{mg}, 0.336$ mmol), DMF ($26.0 \mu \mathrm{l}, 0.377 \mathrm{mmol}$), hexane (14 ml), oxalyl dichloride ($166.4 \mu \mathrm{l}, 1.907 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(118.5 \mu \mathrm{l}, 0.85 \mathrm{mmol})$ and DMAP ($24.0 \mathrm{mg}, 0.196 \mathrm{mmol}$) were used for the esterification. Several drops of MeOH were added to the mixture, which was then concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, 100:1-50:1) to give the (+)-MTPA ester of alcohol 3a (26.1 $\mathrm{mg}, 75 \%$) as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3449$, 3334, 3316, 3142, 2951, 2856, 1761, 1665, 1605, 1579, 1477, 1380, 1271, 1243, 1168, 1127, 1086, 1022, 989, 920, 724 and $652 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27$ and 1.50 (each 3 H , s, isopropylidene), $3.60\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.85(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 9.8 , $\left.1^{\prime}-\mathrm{H}\right)$, $4.32\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.2.4,1^{\prime}-\mathrm{H}\right)$, $4.44-4.52(3 \mathrm{H}, \mathrm{m}$, $2^{\prime}-, 3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.89\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{NH}_{2}\right)$, $7.33-7.58(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.71(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.33(1 \mathrm{H}, \mathrm{s}$, 8- or $2-\mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)-72.14 ; \mathrm{m} / \mathrm{z}$ (EI) $495\left(\mathrm{M}^{+}, 14 \%\right), 480$ (24), 204 (100) and 189 (40) [Found (EI): M^{+}, 495.1738. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires M, 495.1729].

9-[(2'S,3'R)-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Trihydroxybutyl]adenine $\mathbf{4 a}$

A solution of partially protected triol $3 \mathrm{a}(42 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 80% aq. AcOH was stirred at $60^{\circ} \mathrm{C}$ for 5 h and then the solvent was evaporated off in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) to give title triol 4a ($35 \mathrm{mg}, 98 \%$) as a solid, $\mathrm{mp} 232-233^{\circ} \mathrm{C}$ (lit., ${ }^{11}$ $218-219^{\circ} \mathrm{C}$; lit., ${ }^{12}>260^{\circ} \mathrm{C}$) (Found: C, $44.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 29.05$. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 1 / 8 \mathrm{H}_{2} \mathrm{O}$ requires C, 44.76; H, 5.53; N, 29.00\%); the existence of water in this product was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3396$, 3331, 3263, 2925, 1659, 1608, 1577, 1487, 1419, 1334, 1306, 1248, 1209, 1080, 1054, 887, 796, 767, 724, 683, 651 and 598; $\left.\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.29\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 3.38(1 \mathrm{H}, \mathrm{dt}$, $J 10.8$ and $\left.5.4,4^{\prime}-\mathrm{H}\right), 3.57(1 \mathrm{H}$, ddd, $J 10.8,5.4$ and 3.9 , $\left.4^{\prime}-\mathrm{H}\right), 3.70\left(1-\mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.04(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 8.3 , $\left.1^{\prime}-\mathrm{H}\right), 4.40\left(1 \mathrm{H}\right.$, dd, $J 14.2$ and $\left.2.9,1^{\prime}-\mathrm{H}\right)$, $4.45(1 \mathrm{H}, \mathrm{t}$, $\left.J 5.4,4^{\prime}-\mathrm{OH}\right), 4.97\left(1 \mathrm{H}, \mathrm{d}, J 5.4,3^{\prime}-\mathrm{OH}\right), 5.07(1 \mathrm{H}, \mathrm{d}, J 6.4$, $\left.2^{\prime}-\mathrm{OH}\right), 7.16\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 6-\mathrm{NH}_{2}\right), 8.00(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.11(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 46.47$, 63.00, $69.68,73.30,118.58,141.80,148.65,152.10$ and $155.90 ; \mathrm{m} / \mathrm{z}$ (EI) $239\left(\mathrm{M}^{+}, 11 \%\right), 221$ (23), 190 (36), 178 (94), 148 (96) and 135 (100).

9-[(2'S,3'R)-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Trihydroxybutyl]guanine 4b

A solution of partially protected triol $\mathbf{3 b}(10 \mathrm{mg}, 33.9 \mu \mathrm{~mol})$ in 80% aq. $\mathrm{AcOH}(\sim 2 \mathrm{ml})$ was stirred at $70^{\circ} \mathrm{C}$ for 4.5 h and then the solvent was evaporated off in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) to give title triol $\mathbf{4 b}(8 \mathrm{mg}, 93 \%)$ as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 253$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3455,3425,3388,3194,2927,2855,2649,1690$, $1638,1611,1476,1396,1359,1194,1170,1111,1077,1042,914$, 867, 784, 740 and $699 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}\right.$ [$\left.\left.{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.27(1 \mathrm{H}, \mathrm{m}$, $\left.3^{\prime}-\mathrm{H}\right), 3.36\left(1 \mathrm{H}, \mathrm{dt}, J 11.2\right.$ and $\left.5.9,4^{\prime}-\mathrm{H}\right), 3.55-3.62(2 \mathrm{H}, \mathrm{m}$, $2^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.8.3,1^{\prime}-\mathrm{H}\right), 4.22(1 \mathrm{H}, \mathrm{dd}$, $J 14.2$ and $\left.2.4,1^{\prime}-\mathrm{H}\right), 4.43\left(1 \mathrm{H}, \mathrm{t}, J 5.9,4^{\prime}-\mathrm{OH}\right), 4.87(1 \mathrm{H}, \mathrm{d}$, $\left.J 4.9,3^{\prime}-\mathrm{OH}\right), 5.03\left(1 \mathrm{H}, \mathrm{d}, J 5.9,2^{\prime}-\mathrm{OH}\right), 6.42(2 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\left.2-\mathrm{NH}_{2}\right), 7.56(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $10.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) 46.18, 62.98, 69.73, 73.26, 116.27, 138.44, 151.19, 153.31 and $156.74 ; \mathrm{m} / \mathrm{z}$ (FAB, NBA) $256\left(\mathrm{M}^{+}+\mathrm{H}, 15 \%\right)$ [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right), 256.1039 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires m / z 256.1046].

9-[($\left.\mathbf{2}^{\prime} S, 3^{\prime} S\right)-4^{\prime}$-Hydroxy-2', $\mathbf{3}^{\prime}$-isopropylidenedioxybutyl]adenine 5a

To a stirred solution of aldehyde $\mathbf{2 a}(27.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ in
anhydrous $\mathrm{MeOH}(2.0 \mathrm{ml})$ at room temp. was added NaOMe ($30.7 \mu \mathrm{l}$ of a 4.88 m solution in $\mathrm{MeOH}, 0.15 \mathrm{mmol}$) dropwise. After being stirred at room temp. for 11 h , the resulting solution was quenched with $\mathrm{AcOH}\left(1.0 \mathrm{ml}\right.$ of a $5 \times 10^{-2} \mathrm{~m}$ solution in $\mathrm{MeOH}, 0.05 \mathrm{mmol}$) and concentrated in vacuo. The residue was roughly purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 18: 1\right)$ to give the $(2 R)$-epimer of aldehyde $\mathbf{2 a}$ $(18.3 \mathrm{mg}, 0.066 \mathrm{mmol})$.
To an aqueous solution of the $(2 R)$-epimer of aldehyde 2a ($18.3 \mathrm{mg}, 0.066 \mathrm{mmol}$ in 3 ml) was added $\mathrm{NaBH}_{4}(10.1$ $\mathrm{mg}, 0.33 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 0.5 h and then being stirred at room temp. for 1 h , the mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 17: 1\right)$ to give title compound $\mathbf{5 a}$ ($18.5 \mathrm{mg}, 66 \%$ for 2 steps from aldehyde 2a) as a solid, which was recrystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{mp} 167-$ $169^{\circ} \mathrm{C}$ (lit., ${ }^{12} 158-159^{\circ} \mathrm{C}$) [Found: C, 51.75; H, 6.2; N, 24.5. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 1 / 10\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ requires C, $51.94 ; \mathrm{H}, 6.33 ; \mathrm{N}$, 24.43%]; the existence of diethyl ether in this product was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 259 ; \delta_{\mathrm{H}}(400$ $\mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) 1.21 and 1.27 (each 3 H , s, isopropylidene), 3.42-3.49 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}$), $3.76\left(1 \mathrm{H}, \mathrm{dt}, J 7.8\right.$ and $\left.4.9,3^{\prime}-\mathrm{H}\right)$, 4.19 (1 H , ddd, $J 7.8,6.4$ and $\left.4.4,2^{\prime}-\mathrm{H}\right), 4.30(1 \mathrm{H}$, dd, $J 14.7$ and $\left.6.4,1^{\prime}-\mathrm{H}^{\mathrm{a}}\right)$, $4.39\left(1 \mathrm{H}\right.$, dd, $J 14.7$ and $\left.4.4,1^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.89(1 \mathrm{H}$, $\left.\mathrm{t}, J 5.4,4^{\prime}-\mathrm{OH}\right), 7.20\left(2 \mathrm{H}\right.$, br s, $\left.6-\mathrm{NH}_{2}\right), 8.06(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.13(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H})$; NOE, irradiate $2^{\prime}-\mathrm{H}$, observe $4^{\prime}-\mathrm{H}$ $(1.7 \%), 3^{\prime}-\mathrm{H}(1.8 \%)$ and $1^{\prime}-\mathrm{H}^{\mathrm{b}}\left(2.1^{\prime} \%\right)$; irradiate $3^{\prime}-\mathrm{H}$, observe $4^{\prime}-\mathrm{H}(1.8 \%), 2^{\prime}-\mathrm{H}(1.4 \%), 1^{\prime}-\mathrm{H}^{\mathrm{a}}(1.5 \%)$ and $1^{\prime}-\mathrm{H}^{\mathrm{b}}(1.0 \%)$; $\left.\delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 26.85,27.03,44.62,61.12,75.89,78.87,108.74$, 118.32, 141.31, 149.63, 152.50 and $155.92 ; \mathrm{m} / \mathrm{z}$ (FAB, NBA) 280 ($\mathrm{M}+\mathrm{H}, 84 \%$).

9-[(2'S,3'S)-4'-Hydroxy-2', $\mathbf{3}^{\prime}$-isopropylidenedioxybutyl]guanine 5b

To a suspension of aldehyde $\mathbf{2 b}$ ($78 \mathrm{mg}, 0.25 \mathrm{mmol}$) in anhydrous $\mathrm{MeOH}(20 \mathrm{ml})$ at room temp. was added $\mathrm{K}_{2} \mathrm{CO}_{3}(69$ $\mathrm{mg}, 0.5 \mathrm{mmol})$. After being stirred at room temp. for 20 h , the resulting solution was neutralized with 10% aq. AcOH and concentrated in vacuo. The residue was purified by reversedphase chromatography (water- $\mathrm{MeCN}, 19: 1$) to give the ($2 R$)epimer of aldehyde $\mathbf{2 b}(58 \mathrm{mg}, 75 \%)$ as a hydrate; $\lambda_{\max }($ water $) /$ $\mathrm{nm} 252 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3423,3218,3137,2989$, 2940, 2758, $1689,1638,1604,1543,1478,1377,1217,1161,1076,904,852$, 782, 690 and $638 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 1.26$ and 1.28 (each 3 H , s, isopropylidene), $3.56\left(1 \mathrm{H}, \mathrm{dd}, J 7.3\right.$ and $\left.5.9,2^{\prime}-\mathrm{H}\right)$, $4.03\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.7.3,4^{\prime}-\mathrm{H}\right), 4.18(1 \mathrm{H}, \mathrm{td}, J 7.3$ and 3.4 , $\left.3^{\prime}-\mathrm{H}\right), 4.26\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.3.4,4^{\prime}-\mathrm{H}\right), 4.74(1 \mathrm{H}, \mathrm{td}, J 6.3$ and $\left.5.9,1^{\prime}-\mathrm{H}\right), 6.03\left(1 \mathrm{H}, \mathrm{d}, J 6.3,1^{\prime}-\mathrm{OH}\right), 6.09(1 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.1^{\prime}-\mathrm{OH}\right), 6.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, guanine 2- NH_{2}), $7.65(1 \mathrm{H}, \mathrm{s}$, guanine $8-\mathrm{H}), 10.28\left(1 \mathrm{H}\right.$, br s, guanine $\left.\mathrm{N}^{1}-\mathrm{H}\right) ; m / z$ (FAB, NBA) 312 $\left(\mathrm{M}^{+}+\mathrm{H}, 26 \%\right)$ [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 312.1302. $\mathrm{C}_{12} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}_{5} \mathrm{O}_{5}$ requires $\left.m / z, 312.1308\right]$.
To a suspension of the $(2 R)$-epimer of aldehyde $\mathbf{2 b}$ (31 mg , $0.1 \mathrm{mmol})$ in water (10 ml) was added $\mathrm{NaBH}_{4}(19 \mathrm{mg}, 0.5$ mmol) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min and at room temp. for 70 min , the mixture was neutralized with 10% aq. AcOH and concentrated in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1-9:1) to give title compound $\mathbf{5 b}(26 \mathrm{mg}, 88 \%)$ as a solid, $\lambda_{\max }(\mathrm{MeOH}) /$ $\mathrm{nm} 253 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3422,3132,2988,2937,2761,1690$, $1655,1638,1608,1543,1479,1378,1216,1162,1075,1063,845$, 782, 690 and 637; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$ DMSO $) 1.25$ and 1.29 (each $3 \mathrm{H}, \mathrm{s}$, isopropylidene CH_{3}), 3.39-3.45 $\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}_{2}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dt}, J 7.8\right.$ and $\left.4.9,3^{\prime}-\mathrm{H}\right), 4.06-4.20\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 4.83\left(1 \mathrm{H}, \mathrm{t}, J 5.4,4^{\prime}-\mathrm{OH}\right), 6.41\left(2 \mathrm{H}, \mathrm{br}\right.$ s, 2- NH_{2}), 7.63 $(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $10.52\left(1 \mathrm{H}, \mathrm{s}, \mathrm{N}^{1}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left(\left[^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 26.88$, 26.99, 44.40, 61.08, 75.66, 79.11, 108.67, 116.16, 137.78, 151.26, 153.54 and 156.75; m/z (EI) $295\left(\mathrm{M}^{+}, 26 \%\right.$), 280 (33), 219 (86), 164 (55) and 151 (100) [Found (EI): M ${ }^{+}$, 295.1299. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $M, 295.1280]$.

Preparation of (+)-MTPA ester of alcohol 5a

The (+)-MTPA ester of alcohol $\mathbf{5 a}$ was obtained by the procedure described for the preparation of (+)-MTPA ester of diastereomer 3a, in 73% yield, $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 260 ; v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3319,3152,2927,2855,1752,1646,1602,1471,1455$, $1419,1378,1243,1172,1109,1022,917,848,799,764,720$ and 648; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.20$ and 1.26 (each 3 H , s, isopropylidene), $3.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.80(1 \mathrm{H}$, ddd, $J 8.3,4.4$ and $\left.3.9,2^{\prime}-\mathrm{H}\right), 4.17\left(1 \mathrm{H}, \mathrm{dt}, J 8.3\right.$ and $\left.3.9,3^{\prime}-\mathrm{H}\right), 4.37(2 \mathrm{H}, \mathrm{t}, J 3.9$, $\left.4^{\prime}-\mathrm{H}\right), 4.48\left(1 \mathrm{H}, \mathrm{dd}, J 12.2\right.$ and $\left.4.4,1^{\prime}-\mathrm{H}\right), 4.57(1 \mathrm{H}, \mathrm{dd}, J 12.2$ and $\left.3.9,1^{\prime}-\mathrm{H}\right)$, $5.79\left(2 \mathrm{H}\right.$, br s, $\left.6-\mathrm{NH}_{2}\right)$, $7.39-7.54(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.88(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.29(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{F}}\left(\mathrm{CDCl}_{3}\right)$ $-72.21 ; m / z(\mathrm{FAB}, \mathrm{NBA}) 496\left(\mathrm{M}^{+}+\mathrm{H}, 32 \%\right)$ [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 496.1790. $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{~N}_{5} \mathrm{O}_{5}$ requires $\left.m / z, 496.1808\right]$.

9-[(2'S,3'S)-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Trihydroxybutyl]adenine 6a

A solution of partially protected triol $\mathbf{5 a}(27.9 \mathrm{mg}, 0.1 \mathrm{mmol})$ in 80% aq. $\mathrm{AcOH}(2.5 \mathrm{ml})$ was stirred at $70^{\circ} \mathrm{C}$ for 19 h and then the solvent was evaporated off in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) and the resulting product was triturated with $\mathrm{MeOH}-\mathrm{Et}_{2} \mathrm{O}$ to give title triol $\mathbf{6 a}(14.4 \mathrm{mg}, 60 \%)$ as a solid, $\mathrm{mp} 233-236^{\circ} \mathrm{C}$ (decomp.) (lit., ${ }^{12} 215^{\circ} \mathrm{C}$) (Found: C, 45.0; H, 5.6; N, 27.95. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{5} \cdot 1 / 3 \mathrm{CH}_{3} \mathrm{OH}$ requires $\mathrm{C}, 44.85 ; \mathrm{H}, 5.78 ; \mathrm{N}, 28.03 \%$); the existence of methanol in this product was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) 3.37-3.42 ($\left.2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{and} 4^{\prime}-\mathrm{H}\right)$, 3.47 (1 H , ddd, J 10.3, 5.4 and $\left.4.4,4^{\prime}-\mathrm{H}\right), 3.88\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.10(1 \mathrm{H}$, dd, $J 14.2$ and $\left.9.3,1^{\prime}-\mathrm{H}\right), 4.23\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.4.4,1^{\prime}-\mathrm{H}\right), 4.49$ ($1 \mathrm{H}, \mathrm{t}, J 4.4,4^{\prime}-\mathrm{OH}$), $4.73\left(1 \mathrm{H}, \mathrm{d}, J 4.9,3^{\prime}-\mathrm{OH}\right), 4.78(1 \mathrm{H}, \mathrm{d}$, $\left.J 6.8,2^{\prime}-\mathrm{OH}\right), 7.15\left(2 \mathrm{H}, \mathrm{br}\right.$ s, $\left.6-\mathrm{NH}_{2}\right), 8.02(1 \mathrm{H}, \mathrm{s}, 2$ - or $8-\mathrm{H})$ and $8.12(1 \mathrm{H}, \mathrm{s}, 8$ - or $\left.2-\mathrm{H}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 46.29,62.14,68.78$, $71.85,118.63,141.53,148.58,152.10$ and $155.83 ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}$, NBA) $240\left(\mathrm{M}^{+}+\mathrm{H}, 12 \%\right)$.

9-[(2'S,3'S)-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Trihydroxybutyl]guanine $\mathbf{6 b}$

A solution of partially protected triol $\mathbf{5 b}(17 \mathrm{mg}, 57.6 \mu \mathrm{~mol})$ in 80% aq. $\mathrm{AcOH}(\sim 5 \mathrm{ml})$ was stirred at $70^{\circ} \mathrm{C}$ for 9 h and then solvent was evaporated off in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) to give title triol $\mathbf{6 b}(13 \mathrm{mg}, 88 \%)$ as a solid, $\lambda_{\max }(\mathrm{MeOH} / \mathrm{nm} 254 ;$ $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3423,3144,2961,2767,1693,1657,1620,1544$, $1478,1404,1378,1314,1195,1171,1117,1074,810,780,691$, 635,595 and $\left.560 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.29-3.40(2 \mathrm{H}, \mathrm{m}$, $3^{\prime}-$ and $\left.4^{\prime}-\mathrm{H}\right), 3.45\left(1 \mathrm{H}, \mathrm{dt}, J 10.3\right.$ and $\left.5.9,4^{\prime}-\mathrm{H}\right), 3.79(1 \mathrm{H}$, dddd, $J 8.8,6.8,4.9$ and $\left.2.4,2^{\prime}-\mathrm{H}\right), 3.92(1 \mathrm{H}$, dd, $J 14.2$ and 8.8 , $\left.1^{\prime}-\mathrm{H}\right), 4.00\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.4.9,1^{\prime}-\mathrm{H}\right), 4.47(1 \mathrm{H}, \mathrm{t}, J 5.9$, $\left.4^{\prime}-\mathrm{OH}\right), 4.67\left(1 \mathrm{H}, \mathrm{d}, J 5.4,3^{\prime}-\mathrm{OH}\right), 4.71\left(1 \mathrm{H}, \mathrm{d}, J 6.8,2^{\prime}-\mathrm{OH}\right)$, $6.40\left(2 \mathrm{H}, \mathrm{br}, 2-\mathrm{NH}_{2}\right), 7.58(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $10.47\left(1 \mathrm{H}, \mathrm{s}, \mathrm{N}^{1}-\right.$ $\left.\mathrm{H}) ; \delta_{\mathrm{c}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 45.90,62.12,68.72,71.76,116.40,138.18$, 151.22, 153.40 and 156.82; m / z (FAB, NBA) $256\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 10%) [Found (FAB) $\left(\mathrm{M}^{+}+\mathrm{H}\right), 256.1039 . \mathrm{C}_{9} \mathrm{H}_{14} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires $m / z, 256.1046]$.
(2S,3S)-4-(Adenin-9-yl)-2,3-isopropylidenedioxybutanoic acid 7 A mixture of aldehyde 2a ($127 \mathrm{mg}, 0.46 \mathrm{mmol}$) and $3 \% \mathrm{Pt} / \mathrm{C}$ ($149 \mathrm{mg}, 0.023 \mathrm{mmol}$ of Pt) in water $(5 \mathrm{ml})$ was stirred under oxygen (balloon) at $45^{\circ} \mathrm{C}$. The pH of the reaction mixture was adjusted to ~ 7.5 with aq. NaHCO_{3} twice during the reaction. After being stirred at $45^{\circ} \mathrm{C}$ for 49 h , the mixture was filtered through a Celite pad and concentrated in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) to give acid $7(62 \mathrm{mg}, 46 \%)$ as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm}$ 260; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3424,3187,2990$, 2937, 1637, 1607, 1479, 1422, 1379, 1331, 1305, 1249, 1217, 1081, 1052, 891, 850, 797,725 and $650 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 1.17$ and 1.40 (each 3 H , s, isopropylidene), $4.02(1 \mathrm{H}$, dd, $J 14.2$ and 9.8 , $4-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and $2.9,4-\mathrm{H}), 4.41(1 \mathrm{H}, \mathrm{d}, J 6.8$, $2-\mathrm{H}), 4.51(1 \mathrm{H}$, ddd, $J 9.8,6.8$ and $2.9,3-\mathrm{H}), 7.12(2 \mathrm{H}, \mathrm{br}$ s, adenine $\left.6-\mathrm{NH}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H})$ and $8.09(1 \mathrm{H}$,
s, adenine 8 - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 25.62,27.76,44.88$, $74.41,77.89,108.19,118.54,141.58,149.70,152.15,155.85$ and 169.29; m/z (FAB, Gly) 294 ($\mathrm{M}^{+}+\mathrm{H}, 11 \%$) [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 294.189. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires m / z 294.1202].

L-Eritadenine [(2S,3S)-4-(adenin-9-yl)-2,3-dihydroxybutanoic acid] 8

A solution of compound $7(49 \mathrm{mg}, 0.167 \mathrm{mmol})$ in 10% aq. $\mathrm{AcOH}(6 \mathrm{ml})$ was stirred at $65^{\circ} \mathrm{C}$ for 4 h , and then the solvent was evaporated off in vacuo to give diol $8(42 \mathrm{mg}, 99 \%)$ as a solid, $[a]_{\mathrm{D}}^{26}-14.3(c 0.07,1 \mathrm{~m} \mathrm{HCl})\left\{\right.$ lit. ${ }^{3 b}[a]_{\mathrm{D}}^{20}-14.8(c 0.5,1 \mathrm{~m}$ $\mathrm{HCl})\} ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 3.27$ $(1 \mathrm{H}, \mathrm{d}, J 8.3,2-\mathrm{H}), 3.63(1 \mathrm{H}, \mathrm{td}, J 8.3$ and $2.4,3-\mathrm{H}), 4.03(1 \mathrm{H}$, dd, $J 13.7$ and 8.3, 4-H), 4.38 (1 H , dd, $J 13.7$ and $2.4,4-\mathrm{H}$), $7.12\left(2 \mathrm{H}, \mathrm{br}\right.$ s, adenine $\left.6-\mathrm{NH}_{2}\right), 8.03(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H})$ and $8.10(1 \mathrm{H}, \mathrm{s}$, adenine 8 - or $2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100 \mathrm{MHz}\right.$; $\left.\left.{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 46.63, 70.54, 71.25, 118.43, 141.66, 149.69, 152.15, 155.83 and 175.18; m / z (FAB, Gly) $254\left(\mathrm{M}^{+}+\mathrm{H}, 10 \%\right.$) [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right), 54.0879 . \mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{5} \mathrm{O}_{4}$ requires m / z 254.0889]

(2R,3S)-4-(Adenin-9-yl)-2,3-isopropylidenedioxybutanal oximes 9 (EIZ)

To a stirred solution of hydroxylamine hydrochloride (125 mg , 1.8 mmol) in anhydrous $\mathrm{MeOH}(30 \mathrm{ml})$ was added NaOMe ($369 \mu \mathrm{l}$ of 4.88 m solution in $\mathrm{MeOH}, 1.8 \mathrm{mmol}$) at room temp. The mixture was stirred at room temp. for 3 h and was then filtered through a Celite pad to remove resulting NaCl . The mixture of the filtrate and aldehyde $\mathbf{2 a}$ ($333 \mathrm{mg}, 1.2 \mathrm{mmol}$) was stirred at room temp. for 6 h and was then concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 30: 1-10: 1\right)$ to give geometrical mixture 9 ($249 \mathrm{mg}, 71 \% ; E / Z=38: 62$) as a solid, which was recrystallized from EtOH, mp 234-237 ${ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 49.1; $\mathrm{H}, 5.45 ; \mathrm{N}, 28.55 . \mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{6} \mathrm{O}_{3}$ requires C, 49.31; H, 5.52; N, $28.75 \%) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3328,3199$, 2989, 2937, 2884, 1690, 1647, 1611, 1579, 1480, 1422, 1382, 1340, 1306, 1248, 1219, 1164, 1072, 981, 953, 911, 876, 797, 727 and $650 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$; for (Z)-isomer: 1.25 and 1.48 (each 3 H , s, isopropylidene), $4.03(1 \mathrm{H}$, dd, $J 13.87$ and $9.8,4-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $2.9,4-\mathrm{H}), 4.80(1 \mathrm{H}$, ddd, $J 9.8,6.8$ and $2.9,3-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{dd}, J 6.8$ and $4.4,2-\mathrm{H}), 6.97$ $(1 \mathrm{H}, \mathrm{d}, J 4.4,1-\mathrm{H}), 7.18\left(2 \mathrm{H}, \mathrm{br}\right.$ s, adenine $\left.6-\mathrm{NH}_{2}\right), 8.03(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H}), 8.11(1 \mathrm{H}, \mathrm{s}$, adenine 8 - or $2-\mathrm{H})$ and 11.65 $(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{OH})$; for (E)-isomer: 1.26 and 1.47 (each $3 \mathrm{H}, \mathrm{s}$, isopropylidene), $4.21\left(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}_{2}\right), 4.72(1 \mathrm{H}, \mathrm{q}, J 6.8$, $3-\mathrm{H}), 4.79(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 7.20\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, adenine $\left.6-\mathrm{NH}_{2}\right)$, 7.46 $(1 \mathrm{H}, \mathrm{d}, J 7.8,1-\mathrm{H}), 8.05(1 \mathrm{H}, \mathrm{s}$, adenine $2-$ or $8-\mathrm{H}), 8.12(1 \mathrm{H}$, s , adenine $8-$ or $2-\mathrm{H}$) and $11.28(1 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{OH}) ; \mathrm{m} / \mathrm{z}$ (EI) $292\left(\mathrm{M}^{+}, 51 \%\right), 277(25), 234(29), 217(41), 148$ (97) and 135 (100).
($2 R, 3 S$)-4-(Adenin-9-yl)-2,3-isopropylidenedioxybutanenitrile 10 To a solution of oxime 9 ($102 \mathrm{mg}, 0.35 \mathrm{mmol}$) in DMF (0.7 ml) was added thionyl dichloride ($127.7 \mu \mathrm{l}, 1.75 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After being stirred at $0^{\circ} \mathrm{C}$ for 2.5 h , the mixture was concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1-10: 1\right)$ to give nitrile $10(76 \mathrm{mg}, 79 \%)$ as a solid, $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} 260$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3345,3151,2991,2940,1658,1602,1490,1422$, $1379,1331,1312,1236,1153,1073,730$ and $646 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; [${ }^{2} \mathrm{H}_{6}$ DMSO) 1.27 and 1.50 (each 3 H , s, isopropylidene), 4.45 $(1 \mathrm{H}$, dd, $J 14.2$ and $9.3,4-\mathrm{H}), 4.61(1 \mathrm{H}, \mathrm{dd}, J 14.2$ and 3.4 , $4-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{ddd}, J 9.3,4.9$ and $3.4,3-\mathrm{H}), 5.41(1 \mathrm{H}, \mathrm{d}, J 4.9$, 2-H), $7.24\left(2 \mathrm{H}, \mathrm{s}\right.$, adenine $\left.6-\mathrm{NH}_{2}\right), 8.14(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H})$ and $8.15(1 \mathrm{H}, \mathrm{s}$, adenine 8 - or $2-\mathrm{H}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.34 and 1.64 (each 3 H , s, isopropylidene), $4.48(1 \mathrm{H}$, dd, $J 14.2$ and $7.8,4-\mathrm{H})$, $4.68(1 \mathrm{H}$, ddd, $J 7.8,5.4$ and $3.9,3-\mathrm{H}), 4.73(1 \mathrm{H}$, dd, $J 14.2$ and $3.9,4-\mathrm{H}), 4.94(1 \mathrm{H}, \mathrm{d}, J 5.4,2-\mathrm{H}), 5.87(2 \mathrm{H}$, br s, adenine $\left.6-\mathrm{NH}_{2}\right), 7.94(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H})$ and $8.36(1 \mathrm{H}$, s, adenine 8 - or 2-H); NOE $\left(\mathrm{CDCl}_{3}\right)$, irradiate $2-\mathrm{H}$, observe $3-\mathrm{H}$
(8.6\%); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 25.78,27.07,44.23,66.32,74.88,113.47$, $115.79(\mathrm{CN}), 119.54,141.03,149.93,153.21$ and $155.58 ; \mathrm{m} / \mathrm{z}$ (EI) 274 (M $\left.{ }^{+}, 35 \%\right), 259(25), 216(76), 149$ (100) and 135 (68) [Found (EI): M ${ }^{+}$, 274.1169. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires M, 274.1178].

($2 R, 3 S$)-4-(Adenin-9-yl)-2,3-dihydroxybutanenitrile 11

A solution of compound $\mathbf{1 0}(43 \mathrm{mg}, 0.157 \mathrm{mmol})$ in TFA (2 ml) was stirred at room temp. for 45 h , and then solvent was removed in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 4:1) to give diol 11 (21 mg , 57%) as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 260 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3423$, 3178, 2931, 2244 (CN), 1702, 1653, 1609, 1478, 1422, 1303, 1252, 1074, 794, 727, 650 and $591 ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;\left[^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ $3.99(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.05(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $8.8,4-\mathrm{H}), 4.37$ $(1 \mathrm{H}, \mathrm{dd}, J 13.7$ and $2.4,4-\mathrm{H}), 4.45(1 \mathrm{H}, \mathrm{t}, J 6.4,2-\mathrm{H}), 6.04$ $(1 \mathrm{H}, \mathrm{d}, J 6.4,3-\mathrm{OH}), 6.82(1 \mathrm{H}, \mathrm{d}, J 6.4,2-\mathrm{OH}), 7.21(2 \mathrm{H}, \mathrm{s}$, adenine $\left.6-\mathrm{NH}_{2}\right), 8.03(1 \mathrm{H}, \mathrm{s}$, adenine 2 - or $8-\mathrm{H})$ and $8.13(1 \mathrm{H}$, s , adenine 8 - or $\left.2-\mathrm{H}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 45.68$, 63.49, 69.82, 118.60, 119.84, 141.58, 149.54, 152.28 and $155.92 ; \mathrm{m} / z$ (FAB, NBA) $235\left(\mathrm{M}^{+}+\mathrm{H}, 8 \%\right.$) [Found (FAB) $\left(\mathrm{M}^{+}+\mathrm{H}\right), 235.0949$ $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{2}$ requires m / z, 234.0943].

9-[(2'S)-4'-Hydroxy-3'-hydroxymethyl-2', $\mathbf{3}^{\prime}$-isopropylidenedioxybutyl]adenine $\mathbf{1 2}$

To a suspension of aldehyde $\mathbf{2 a}(27.7 \mathrm{mg}, 0.1 \mathrm{mmol})$ and formaldehyde ($45.0 \mu \mathrm{l}$ of $37 \mathrm{wt} . \%$ solution in water, 0.6 mmol) was added $2 \mathrm{~m} \mathrm{NaOH}(0.1 \mathrm{ml}, 0.2 \mathrm{mmol})$ at room temp. and the mixture was stirred at this temp. for 24 h . The mixture was treated with $\mathrm{NaBH}_{4}(15.1 \mathrm{mg}, 0.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ and was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h , neutralized by the addition of 10% aq. AcOH , and then concentrated in vacuo. The residue was purified by column chromatography on silica gel $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 15: 1\right)$ to give compound 12 ($27.6 \mathrm{mg}, 89 \%$) as a solid, $\mathrm{mp} 192-194{ }^{\circ} \mathrm{C}$ (decomp.) (Found: C, 48.8; H, 6.05; N, 22.0. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{4}$. $1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires C, $49.05 ; \mathrm{H}, 6.33 ; \mathrm{N}, 22.00 \%$); the existence of water in this product was confirmed by ${ }^{1} \mathrm{H}$ NMR analysis; $[a]_{D}^{28}$ -38.5 ($c 0.27$ in MeOH$)$; $\lambda_{\text {max }}(\mathrm{MeOH}) / \mathrm{nm} \mathrm{260;} v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3421, 3338, 3222, 2990, 2937, 2875, 1648, 1604, 1578, 1479, 1421, 1382, 1324, 1246, 1216, 1054, 932, 842, 722 and 646; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ;{ }^{[}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}$) 1.21 and 1.38 (each 3 H , s, isopropylidene), $3.45-3.51\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{C} H \mathrm{HOH}\right), 3.53-3.58$ $\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{CHHOH}\right), 4.36(1 \mathrm{H}, \mathrm{dd}, J 12.7$ and 9.8 , $\left.1^{\prime}-\mathrm{H}\right), 4.41\left(1 \mathrm{H}, \mathrm{d}, J 9.8,2^{\prime}-\mathrm{H}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J 12.7,1^{\prime}-\mathrm{H}\right), 4.83$ $\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{OH}\right.$ and $\left.3^{\prime}-\mathrm{CH}_{2} \mathrm{OH}\right), 7.18\left(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{NH}_{2}\right), 8.07$ $(1 \mathrm{H}, \mathrm{s}, 2$ - or $8-\mathrm{H})$ and $8.13(1 \mathrm{H}, \mathrm{s}, 8$ - or $\left.2-\mathrm{H}) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right)$ 26.66, 28.44, 42.98, 60.70, 62.31, 77.16, 83.81, 107.75, 118.47, $140.85,149.47,152.37$ and $155.90 ; \mathrm{m} / \mathrm{z}$ (EI) 309 ($\mathrm{M}^{+}, 12 \%$), 294 (18), 251 (36), 234 (46), 203 (32) and 136 (100).

9-[(2'S)-2', $\mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Trihydroxy-3'-(hydroxymethyl)butyl]adenine 13
A solution of compound $\mathbf{1 2}(21.2 \mathrm{mg}, 0.069 \mathrm{mmol})$ in TFA $(1 \mathrm{ml})$ was stirred at room temp. for 2 h , and then solvent was removed in vacuo. The residue was purified by reversed-phase chromatography (water-MeCN, 19:1) to give tetraol 13 (15.3 $\mathrm{mg}, 83 \%$) as a solid, $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 261 ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3403$,

3323, 3193, 2940, 2887, 1683, 1656, 1620, 1580, 1478, 1423, $1340,1309,1253,1054,723,652$ and $609 ; \delta_{\mathrm{H}}(400 \mathrm{MHz}$; [${ }^{2} \mathrm{H}_{6}$ DMSO) 3.42-3.55 ($4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and $3^{\prime}-\mathrm{CH}_{2} \mathrm{OH}$), 3.84 $\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.10\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.10.3,1^{\prime}-\mathrm{H}\right), 4.29(1 \mathrm{H}$, br s, $\left.3^{\prime}-\mathrm{OH}\right), 4.45\left(1 \mathrm{H}, \mathrm{dd}, J 14.2\right.$ and $\left.2.0,1^{\prime}-\mathrm{H}\right), 4.48(2 \mathrm{H}, \mathrm{br}$, $4^{\prime}-\mathrm{OH}$ and $\left.3^{\prime}-\mathrm{CH}_{2} \mathrm{OH}\right), 4.84\left(1 \mathrm{H}\right.$, br $\left.2^{\prime}-\mathrm{OH}\right)$, $7.17(2 \mathrm{H}$, br s, $\left.6-\mathrm{NH}_{2}\right), 8.02(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.12(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 45.28,62.10,62.82,70.90,74.96,118.61$, $141.79,149.56,151.77$ and $155.61 ; \mathrm{m} / \mathrm{z}$ (FAB, NBA) 270 $\left(\mathrm{M}^{+}+\mathrm{H}, 4 \%\right)$ [Found (FAB): $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 270.1210. $\mathrm{C}_{10} \mathrm{H}_{16^{-}}$ $\mathrm{N}_{5} \mathrm{O}_{4}$ requires m / z, 270.1202].

References

1 G. B. Elion, P. A. Furman, J. A. Fyfe, P. De Miranda, L. Beauchamp and H. J. Schaeffer, Proc. Natl. Acad. Sci. USA, 1977, 74, 5716; H. J. Schaeffer, L. Beauchamp, P. De Miranda, G. B. Elion, D. J. Bauer and P. Collins, Nature (London), 1978, 272, 583.

2 T. Rokujo, H. Kikuchi, A. Tensho, Y. Tsukitani, T. Takenawa, K. Yoshida and T. Kamiya, Life Sci., 1970, 9(II), 379; I. Chibata, K. Okamura, S. Takeyama and K. Kotera, Experientia, 1969, 25, 1237; T. Kamiya, Y. Saito, M. Hashimoto and H. Seki, Tetrahedron Lett., 1969, 4729
3 (a) I. Votruba and A. Holy, Collect. Czech. Chem. Commun., 1982, 47, 167; (b) A. Holy, I. Votruba and E. De Clercq, Collect. Czech. Chem. Comтип., 1982, 47, 1392.
4 A. Larsson, B. Öberg, S. Alenius, C.-E. Hagberg, N.-G. Johansson, B. Lindborg and G. Stening, Antimicrob. Agents Chemoth., 1983, 23, 664.

5 C. K. Chu and S. J. Cutler, J. Heterocycl. Chem., 1986, 23, 289; E. S. H. El Ashry and Y. El Kilany, Adv. Heterocycl. Chem., 1997, 67, 391.
6 J. Nemec and J. M. Rhoades, Nucleosides, Nucleotides, 1983, 2, 99; L. M. Lerner, Carbohydr. Res., 1984, 127, 141; G. I. Birnbaum, R. Stolarski, Z. Kazimierczuk and D. Shugar, Can. J. Chem., 1985, 63, 1214; M. Bessodes and K. Antonakis, Tetrahedron Lett., 1985, 26, 1305; S. N. Mikhailov, V. L. Florentiev and W. Pfleiderer, Synthesis, 1985, 399; D. P. C. McGee and J. C. Martin, Can. J. Chem., 1986, 64, 1885; G. Beaton, S. Jones and R. T. Walker, Tetrahedron, 1988, 44, 6419.
7 Y. Kitade, K. Hirota and Y. Maki, Tetrahedron Lett., 1993, 34, 4835.
8 A part of this paper was published as a communication: K. Hirota, Y. Monguchi, H. Sajiki and Y. Kitade, Synlett, 1997, 697.

9 C. R. Schmid, J. D. Bryant, M. Dowlatzedah, J. L. Phillips, D. E. Prather, R. D. Schantz, N. L. Sear and C. S. Vianco, J. Org. Chem., 1991, 56, 4056; C. R. Schmid and J. D. Bryant, Org. Synth., 1993, 72, 6.

10 J. A. Dale, D. L. Dull and H. S. Mosher, J. Org. Chem., 1969, 34, 2543; D. E. Ward and C. K. Rhee, Tetrahedron Lett., 1991, 32, 7165.
11 M. Ikehara and E. Ohtsuka, Chem. Pharm. Bull., 1963, 11, 1095.
12 A. Holy, Collect. Czech. Chem. Commun., 1982, 47, 173.
13 (a) S. Y. Ko, A. W. M. Lee, S. Masamune, L. A. Reed, III, K. B. Sharpless and F. J. Walker, Tetrahedron, 1990, 46, 245; (b) A. W. M. Lee, Magn. Reson. Chem., 1985, 23, 468
14 M. Hashimoto, Y. Saito, H. Seki and T. Kamiya, Tetrahedron Lett., 1970, 1359.

Paper 7/07193K
Received 6th October 1997
Accepted 17th November 1997

[^0]: $\dagger[a]_{\mathrm{D}}$-Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.

